

17

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

EVOLUTION OF RECONFIGURABLE BASED
ALGORITHMS FOR BIOINFORMATICS
APPLICATIONS: AN INVESTIGATION

A Surendar1, M Arun2 and C Bagavathi3

Review Article

In the world of expanding constellation of biological species for various technological and biological
reasons, it requires high efficiency and memory to record the genetic database of all the species
so far found. If a species is found and it is established that it was not classified before, it is
essential for the researchers to find out the family of species where it had been evolved from.
Thus researchers use various bioinformatics algorithms which deal with varying operations on
biological data such as DNA analysis, Protein analysis, Genome information retrieval and
Nucleotide applications. It is mandatory that the process of working on a DNA of a new species
should be accurate, fast and energy efficient. It should ensure the correctness of the solution.
The concept of classifying the biological information follows the biological evolution procedure.
The evolution of bioinformatics algorithms started from Needleman-Wunsch algorithm in 1970
and still it is continuing towards better configuration and performance. For an algorithm to work
efficiently, a hardware implementation should be mapped into a platform which appreciates its
inherent complexity and utilizes it completely. Biological algorithms have been often encountered
with processes which require substantial parallel architecture. The best candidate would be
Field Programmable Gate Arrays (FPGA) for the process of solving the biological mysteries
satisfying the necessary requirements. In this paper, prominent algorithms for bioinformatics
applications are studied and their FPGA implementation challenges and opportunities are
explored.

Keywords: Bioinformatics, Pattern matching, Sequence alignment, FPGA implementation

*Corresponding Author: A Surendar surendararavindhan@gmail.com

INTRODUCTION
DNA is the indispensable part of species’ identity

which dist inguishes f rom other species.

ISSN 2250-3137 www.ijlbpr.com
Vol. 2, No. 4, October 2013

© 2013 IJLBPR. All Rights Reserved

Int. J. LifeSc. Bt & Pharm. Res. 2013

1 Faculty of Electrical Engineering, Anna University, Chennai-600025, India.
2 School of Electronics Engineering, VIT University, Vellore-632014, India.
3 Faculty of ECE, K.S.R College of Engineering, Tiruchengode-637215, India.

Understanding DNA is a very basic, imperative

problem in Bioinformatics as it is often used to

identify evolutionary relationships among the

18

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

organisms and predict secondary or tertiary

structure. They are various problems considering

DNA analysis such as DNA Computation, DNA

Detection, DNA Extraction, DNA Fragmentation,

DNA Genetics, DNA Isolation, DNA Sequencing,

and Protein Analysis such as Protein Sequence

Alignment, Protein Identif ication, Structure

Analysis, Enzyme Mapping and Nucleotide

applications like Information Retrieval and

Sequence Matching and Identification. Sequence

alignment is the operation dealing with alignment

of two or more sequences based on their

constituent elements. Pairwise sequence

alignment is used to uncover homologues of a

gene from a database of known patterns.

Sequence alignment is used to study the evolution

of the sequences from a common ancestor such

as protein sequences or DNA sequences. The

mismatches in the alignment correspond to

mutations, and gaps correspond to insertions or

deletions. Sequence alignment refers to the

process of putting together significant alignments

in a database of potentially unrelated sequences.

Given the large DNA sequences that some

researchers wish to study, certain parameters

should be considered before choosing a

bioinformatics sequence alignment algorithm. The

space and time complexity, hardware utilization

efficiency, reusability of design, reliability on the

obtained result and power consumption becomes

increasingly important. Most of the algorithms use

dynamic programming for solving the problem of

optimization. Field Programmable Gate Arrays

are well known for their efficiency and flexibility

and plays a major role in finalizing the reliability

and characteristics of a design before its final

tape-out. Use of FPGA for highly computation time

demanding algorithms. Christopher Ma et al.

(2012) have been found to be highly effective. Any

bioinformatics algorithm falls under the category

of heavy processor demanding algorithm as the

algorithm has to find or match a particular

sequence of biological information to a huge

database of genetic information of millions of

species. Such a process can be achieved by

employing FPGA and analysis would help the

designer to modify the algorithm and improve the

quality. Any alterations on the algorithm such as

increase in speed, reduction in complexity, and

increase in the accuracy of the search process

can be done through FPGA configurations

(Grigorios Chrysos et al., 2012). It would also give

the specifications of hardware to be implemented.

In this paper, we have made it an effort to deliver

information concerning the hardware

implementation possibilities of prominent

algorithms and architectures for bioinformatics

applications.

Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm performs a

global alignment on two sequences (called A and

B here). It is commonly used in bioinformatics to

align protein or nucleotide sequences. The

algorithm was published in 1970 by Saul B

Needleman and Christian D Wunsch

The Needleman-Wunsch (NW) algorithm

performs an optimal global alignment of two

sequences based on certain constraints. The

algorithm aligns the sequences based on

maximum number of matches in amino acid and

minimum number of gaps required to align the

sequences. The algorithm was designed by Saul

B Needleman and Christian D Wunsch. The

Needleman-Wunsch algorithm is the f irst

application of dynamic programming in biological

sequence comparison. It is sometimes referred

to as the Optimal Matching algorithm, because

19

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

the Needleman-Wunsch algorithm finds the

optimal alignment of the entire sequence of both
proteins, it is a global alignment technique.
Consider two strings of gene characteristics s
and t where s is ATTGCTCTG and t is ATGCCG.
In these sequences of varying lengths as given
in Table 1, it can be found by introducing few gaps;
the maximum alignment of the sequences can
be maximized. The score of alignment of two
elements is 1. If there is a mismatch or gap in the
resultant of the algorithm, the score is –1. The
cost of entire alignment would be the sum of all
scores for the alignment. For this example, the

cost of the entire alignment is 3.

Smith-Waterman Algorithm

The algorithm was first proposed by Temple F

Smith and Michael S Waterman in 1981. The

Smith-Waterman algorithm performs local

sequence alignment; that is, for determining

similar regions between two strings or nucleotide

or protein sequences. Instead of looking at the

total sequence, the Smith-Waterman algorithm

compares segments of all possible lengths and

optimizes the similarity measure

The Smith-Waterman algorithm, dynamic

programming algorithm, is for determining

analogous regions between two nucleotide or

protein sequences. It is a non-heuristic algorithm

that guarantees to find the optimal local alignment

with respect to the scoring system being used in

Needleman Wunsch Algorithm. Smith-Waterman

algorithm reduces the number of counterfeit

positives. However, the Smith-Waterman

algorithm produces optimal results by demanding

of time and memory resources and by sacrificing

speed. To confirm a solution to be accurate and

optimal, Smith-Waterman is required to be more

computations costing its reputation to taken the

position of a fast algorithm. As a result, it has been

reinstated in by its successor, BLAST algorithm

with an option of approximate solution.

Smith-Waterman algorithm had been known

for its well-known memory requirement. By using

FPGA, the parallel nature of the algorithm can be

exploited to increase the speed of the algorithm.

Without the pipelining, the direct implementation

of the algorithm resulted in 40 MHz frequency.

The optimal alignment score can be computed

in FPGA through parallel processing. Xilinx Vertex

2 Pro series (Euripides Sotiriades et al., 2005)

has dual port Block RAMs which can be utilized

for parallel reading and writing of data in two

S A T T G C T C T G

t A T - G C - C - G

Score 1 1 -1 1 1 -1 1 -1 1

Table 1: Process of Score
Calculation in NW Algorithm

The optimal alignment would maximize the

cost of entire alignment. This would require a

procedure to align the sequences in all possible

combination and the cost of alignment should be

ensured to be the highest. The FPGA used in

Sotiriades et al. (2006) for implementing

Needleman-Wuncsh algorithm is a Xilinx Virtex-II

Pro, which is based on a 130 nm process, clocked

at 100 MHz. It had employed IP cores for floating

point operations. The issues in this

implementation were related to precision of

floating point operations in FPGA, require

significant die-area and needs deep pipelining to

get acceptable performance. Compared to GPU

and FPGA utilized in Sotiriades et al. (2006), it

has been found that in implementing Needleman-

Wuncsh algorithm, FPGA requires lowest

overhead in accessing memory compared to

GPU.

20

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

channels simultaneously. It can provide excellent

memory throughput. The design was successfully

verified in Memec Design Spartan II FPGA board.

When there is a procedure to be repeated on

different data sets at different scheduled time

instants, the systolic architecture would be the

best choice of design methodology. Systolic

arrays in FPGA have also been implemented for

Smith-Waterman algorithm. Processing

Elements for the analysis DNA and Protein

sequences based on XD1000 reconfigurable

supercomputing platform have been utilized in

Timothy Oliver et al. (2005). The use of systolic

elements in FPGA achieved a speedup of 250

times compared to direct implementation of the

algorithm.

BLAST Algorithm

The BLAST algorithm and the computer program

that implements it were developed by Stephen

Altschul, Warren Gish, and David Lipman at the

US National Center for Biotechnology Information

(NCBI), Webb Miller at the Pennsylvania State

University, and Gene Myers at the University of

Arizona.

Basic Local Alignment Search Tool (BLAST)

is known for its wide use in Bioinformatics. BLAST

is used to find similarities between genetic

sequences (queries) and sequence databases.

It follows a heuristic approach based on Smith

Waterman algorithm. It locates best of possible

local alignments. It is well known for its statistical

significance.

The inputs of the algorithm are the genetic
sequence database and a query which has to be

found in the database. The outputs of the
algorithm are the positions of the areas of these

two strings that have similarity, as well the score
of these similarities. The quality of each pair-wise

alignment is represented as a score and the

scores are ranked. Scoring matrices are used to
calculate the score of the alignment base by base

(DNA) or amino acid by amino acid (protein). The
alignment score will be the sum of the scores for

each position. The significance of each alignment

is computed as E-value. The lower the E-value,
the more signif icant is the score and the

sequences are homologues for low E values.
Each of these pairs, comprising of a database

area and a query area, is called a High Score
Pair (HSP). The score has significant value for

biologist because it is used to compute several

variables, of which the E-value is the most

important.

Depending on the query and database data

types, each BLAST implementation can be

classified into many types. Some types are given

in Table 2.

Table 2: Variations of BLAST algorithm

S. No. Algorithm Query Database

1. BLASTp Amino acid Protein

2. BLASTn Nucleotide Nucleotide

3. nBLASTp Nucleotide translated protein

4. tBLASTn Amino acid Nucleotide translated

5. tBLASTx Nucleotide translated Nucleotide translated

21

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

The database and query are separated in

small substrings known as words. After the word

list generation, the database sequences are

searched for an exact match between any words

of the word list found in the database is called hit.

When these words are separately pattern

matched among database and query, the patterns

searching is extended in both directions with an

aim of maximizing the alignment score S. The

BLAST algorithm extends the initial word hit to a

High scoring Segment Pair (HSP). The BLAST

algorithm was designed by balancing speed and

increased sensitivity for distant sequence

relationships. BLAST emphasizes regions of local

alignment to discover relationships among

sequences which share only remote regions of

similarity.

Reconfigurable computing was used for

speeding up of BLAST elements. NCBI databank

contains millions of sequences. The hardware

implementation should match a sequence with

NCBI database, which grows rapidly in size (Tan

and Sherwood , 2005). The input output (I/O)

operations of FPGA have been found to be a

bottleneck in implementing the BLAST algorithm

in previous versions of FPGA configurations due

to enormous amount of input data to be analyzed.

Recent FPGAs provide embedded blocks of RAM

which offers flexibility in design and faster

memory access time. Virtex-II Pro and Virtex Pro

has a transceiver named ROCKET I/O

transceiver which can allow transfer rates of

10.3125 Gb/s. It has been found to work efficiently

under smaller transfer rates of 8 Gb/s (Stefan

Dydel and Piotr Bala, 2004).

Aho-Corasick Algorithm (ACA)

The Aho-Corasick string matching algorithm is a

string searching algorithm invented by Alfred V.

Aho and Margaret J Corasick. It is a kind of

dictionary-matching algorithm that locates

elements of a finite set of strings (the “dictionary”)

within an input text. It matches all patterns

simultaneously.

Aho-Corasick String Matching algorithm,

developed by Alfred V Aho and Margaret J

Corasick belongs to a class of dictionary-

matching algorithm that finds elements of a finite

set of strings within an input text. It matches all

patterns simultaneously. The algorithm defines a

finite state machine resembling a digital tree with

essential links between the various internal nodes.

These internal links allow fast transitions between

failed pattern matches to other branches of the

tree that share a common prefix. It specializes in

locating all occurrences of any of a finite number

of keywords in a string of text. It consists of

constructing a finite state pattern matching

machine from the keywords and then using the

pattern matching machine to process the text

string in a single pass.

When there is a search for cat in a tree that

only contains cart, the search would be a failure

when it reaches a node with prefix value ca.

Hence the search allows the automaton to transit

between pattern matches without the need for

backtracking. The time complexity of the algorithm

is linear with the length of the patterns (Lp), the

length of the searched text (Ls) and the number

of output matches (Lo).

Time complexity = Lp + Ls + Lo

Aho-Corasick algorithm was implemented in

Virtex IV f x 100 with speed grade-12. The FX

series device offered better RAM/logic ratio

compared to the other devices in the Virtex IV

series as the architecture is constrained only by

22

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

the amount of block RAM and not the logic (West

et al., 2003).

Parsimony-based Phylogeny-Aware
Short Read Alignment Algorithm

Signif icant advances in the methods for

determining the arrangement of nucleotides in a

DNA molecule, have led to a concept of short

reads. The term short read refers to DNA

sequence data that are produced by a new-

generation sequencer. The read lengths typically

vary between 30 and 450 nucleotides. To allow

for an efficient and accurate phylogenetic analysis

of such short read samples, novel maximum

likelihood-based methods can be used. These

approaches are known as phylogenetic

placement algorithm which expertise in assigning

short reads to a fixed, reference phylogeny.

PaPaRa is a popular likelihood-based

phylogenetic inference algorithm following the

principle analogous to that of Smith-Waterman

algorithm, with affine gap penalties. However, the

specific alignment kernel in PaPaRa is used to

align a sequence against an ancestral state

vector that is derived from varying branches in

the phylogenetic reference tree. Compared to the

Smith-Waterman algorithm, PaPaRa implements

a unique alignment kernel and scoring scheme.

The algorithm aligns Query Sequences (QS)

against ancestral state vectors derived from the

reference multiple sequence alignment (RA) and

the corresponding phylogenetic Reference Tree

(RT) that has been inferred using the RA. In a

phylogenetic tree, known sequences of living

species (taxa) are assigned to the leaves of the

tree. The internal nodes correspond to

hypothetical common ancestors of the sub-trees

they define. Because the real sequences at the

ancestral nodes are not known, different methods

for representing the inherent uncertainty of

ancestral states (ancestral sequences) have

been introduced in the context of functions for

scoring alternative phylogenetic trees. The

hardware/software implementation for boosting

performance of a novel short read alignment

method, that simultaneously aligns reads to

reference multiple sequence alignments and

corresponding phylogenetic trees. When mapped

to a Virtex 6 FPGA, our reconfigurable architecture

can compute 133.4 billion cell updates per second

for the novel, tree-based alignment kernel of

PaPaRa. Compared to PaPaRa, running on a 3.2

GHz Intel Core i5 CPU, we obtain speedups for

the alignment kernel that range between 170 and

471. The main advantage of this algorithm is that

the tree structure is also incorporated in the

alignment process of phylogenetic elements.

FASTA Algorithm

FASTA is a DNA and protein sequence alignment

software package first described (as FASTP) by

David J Lipman and William R Pearson in 1985.

Its legacy is the FASTA format which is now

ubiquitous in bioinformatics.

The FASTA algorithm was developed in 1985

by Lipman and Pearson. Unlike the Needlman-

Wunsch and Smith-Waterman algorithms,

FASTA approximates the optimal alignment by

searching and matching k-tuples, or

subsequences of length k. The algorithm

assumes that related proteins will have regions

of identity, and by searching with k-tuples, the

FASTA algorithm allows small regions of local

identity to be found quickly. For proteins, these k-

tuples tend be of length two. FASTA creates a

hash table of all possible k-tuples and goes

23

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

through the entire query protein of length N and

inputs the location of all the k-tuples into the table.

Each k-tuple in the database sequence can be

looked-up in the hash table, and any matches will

allow the algorithm to mark the matching cells in

the matrix. This results in a matrix in which all

points of local identity of length k are marked.

The FASTA algorithm then identifies the 10

highest scoring diagonal runs by identifying each

marked point on the matrix, and adding a positive

score for every other marked cell along a diagonal,

and subtracting a penalty for unmarked cells

between marked cells along the diagonal. These

10 highest scoring segments are kept, and all

other segments of local alignment are discarded.

The 10 diagonals are scored once again using

an amino acid weight matrix (PAM or BLOSUM

matrix) and any diagonals with scores below a

threshold are discarding again. The highest

scoring diagonal is termed init1. The algorithm

then calculates the scores of joining every

combination of diagonals, as long as the diagonals

are downstream from one another. To calculate

the score of a joined series of diagonals, the

individual scores of each of the diagonals are

summed, and a constant joining penalty is

subtracted each time two subsequences are

joined. The maximum of the joined alignments is

termed initn and joined alignments which have a

score below a threshold are discarded. The initn

scores are used to rank each of the alignments

with sequences from the database. The final step

in creating the sequence alignment is to define a

diagonal band of around 32 residues wide around

the init1 diagonal from the upper-left of the matrix

to the lower-right. The FASTA algorithm assumes

that the optimal alignment will include or be near

the init1 diagonal. A dynamic programming

algorithm is then performed in this band to find

the final optimal alignment, and it essentially

merges the regions of local alignment into a single

alignment. The FASTA algorithm is substantially

faster than the Needleman-Wunsch or Smith-

Waterman alignments and thus can be more

easily used in database queries. However, the

time complexity of this algorithm does not seem

to suggest this concept.

FastLSA Algorithm

Dynamic programming sequence alignment

algorithms like Needleman-Wunsch algorithm

and Smith Waterman algorithm had been found

to have high time and space complexity, which

would prove these algorithms to be costly. Fast

Linear Space Alignment (FastLSA) algorithm is a

sequential, global optimal pairwise sequence

alignment algorithm that becomes accustomed

to the amount of space available by trafficking

space for operations. FastLSA can effectively

adapt to use either linear or quadratic space,

depending on the amount of available memory. It

has been found that due to memory caching

effects, FastLSA is always fast or faster than

many algorithms.

Knowing FastLSA’s strong systematic and

experimental characteristics with respect to

space and time complexity, FastLSA is a good

contestant for parallelization, while maintaining

the strong complexity properties of the sequential

algorithm.

AGREP Algorithm

AGREP is a proprietary approximate string

matching program, developed by Udi Manber Sun

Wu between 1988 and 1991, for use with the UNIX

operating system. It was later ported to OS/2,

DOS, and Windows. It selects the best-suited

24

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

algorithm for the current query from a variety of

the known fastest (built-in) string searching

algorithms, including Manber and Wu’s bitap

algorithm based on Levenshtein distances.

When concentrating on power consumption

of a sequence matching algorithm for matching

a sequence in very large database, it would be

essential to settle the methods which are heuristic

in nature. AGREP algorithm, expanded as

approximate GREP, is a rapid text matching

algorithm that allows approximate values. This

string searching algorithm incorporates possible

errors and the process is more flexible to

approximate string matches. With a string query

compared against a database, the algorithm can

detect exact and approximate matches, which

are those with insertions, deletions, and

substitutions. The approximate matches are

introduced to find all substrings with a measure

of closeness relative to the query pattern. The

hardware used was Opal Kelly XEM3010 which

mainly performed the functions of communication

with the host software through USB protocol. It

was observed that the speedup of the algorithm

increased ,as the size of the database and query

length increased.

Homology Search Algorithm

Homology search, can achieve high performance

using off-the-shelf FPGA boards. The

performance is almost comparable with small to

middle class dedicated hardware systems when

we use one board with one of the latest FPGAs

(Xilinx XCV2000E). The time for comparing a

query sequence of 2048 elements with a

database sequence of 64 million elements by the

Smith-Waterman algorithm is about 34 s, which

is about 330 times faster than a desktop computer

with a 1 GHz Pentium III. We can also accelerate

the performance of a laptop computer using one

PC card with one FPGA (Xilinx XCV300). The

time for comparing a query sequence (1024) with

database sequence (64 million) is about 185 s,

which is about 30 times faster than the desktop

computer.

It can evaluate the performance for the

translated nucleotides. When we need to translate

the sequences during the comparison, the size

of each unit on the FPGA becomes about 10%

larger and the parallelism in the first phase will

go down to 120 from 144 (about 20%

performance down). Some parts of the programs

for the homology search are still under

development, and we also need to improve other

parts and also developing software for parallel

processing of the homology search with more

number of pairs of FPGAs and host computers

connected by Ethernet.

Bloom Filter

A Bloom filter, conceived by Burton Howard Bloom

in 1970 is a space-efficient probabilistic data

structure that is used to test whether an element

is a member of a set. False positive matches are

possible, but false negatives are not; i.e., a query

returns either “inside set but may be wrong” or

“definitely not in set”. Elements can be added to

the set, but not removed. The more elements that

are added to the set, the larger the probability of

false positives.

Bloom filter is a space-efficient probabilistic

data structure that is used to test whether an

element is a member of a set. This compact

representation is the payoff for allowing a small

rate of false positives in membership queries; that

is, queries might incorrectly recognize an element

25

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

as member of the set which can be made

negligible by the intensive design effort. Bloom

filter was implemented on FPGAs for query and

data retrieval applications of computer network

security [5], etc. Counting k-mers (substrings of

length k in DNA sequence data) is an essential

component of many methods in bioinformatics,

including for genome and transcriptome

assembly, for metagenomic sequencing, and for

error correction of sequence reads. Using a

Bloom filter, a probabilistic data structure that

stores all the observed k-mers implicitly reduced

memory requirements [6].

Content Addressable Memory (CAM):

CAM is a special type of computer memory used

in certain very high speed searching applications.

It is also known as associative memory,

associative storage, or associative array, although

the last term is more often used for a

programming data structure.

A CAM is a critical device for applications

involving communication networks, local area

network bridges/switches, databases, lookup

tables, and tag directories, due to its high-speed

data search capability. Bloom filter and CAM are

methods which have more hardware compatibility

and higher degree of parallelism (Arun and

Krishnan, 2011). CAM based architectures were

implemented for high data intensive search

applications using Xilinx Virtex5LX85T (Arun and

Krishnan, 2011). Hardware compatible

architectures like Bloom filter and CAM are need

to be explored further for FPGA implementation

of bioinformatics applications.

DISCUSSION AND
CONCLUSION
The volume of NCBI database increases in pace

much faster than the speed of IC integration

predicted by Moore’s law. The species count has

exceeded millions with intricate sequences of

base pairs. In identifying a species, various

methods have been used previously, which were

tedious and inaccurate attributed to human err.

It has been found that use of various gene

matching algorithms in FPGA utilizing the faster

data access time, flexibility and configurability of

FPGA ensures accuracy and high speed

throughput of genome analysis.

A scalable and fast solution is needed to

accommodate the largest bioinformatics data

today and to sustain the real time processing.

Software based algorithms are not scalable to

high-speeds. Hardware are architectures (Arun

and Krishnan, 2011) have gained a lot of attention

recently due to the intrinsic speed advantage over

software systems.

Prominent algorithms for bioinformatics have

been listed along with hardware implementations

in this paper. Algorithms and architectures can

be improvised to attain higher degree of

parallelism, configurability and scalability to

implement in a FPGA and achieve the required

target of power and data speed.

REFERENCES
1. Christopher Ma, Thomas K F Wong, Lam T

W, Hon W K, Sadakane K and Yiu S M

(2012), “An Efficient Alignment Algorithm for

Searching Simple Pseudoknots over Long

Genomic Sequence”, IEEE/ACM

Transactions on Computational Biology and

Bioinformatics, Vol. 9, No. 6, December.

2. Grigorios Chrysos, Agathoklis

Papadopoulos and Geore Petihakis (2012),

“Opportunities from the Use of FPGAs as

26

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

Platforms for Bioinformatics Algorithms”,

Twelfth IEEE International Conference on

Bioinformatics and Bioengineering (BIBE),

November 2012.

3. Alachiotis N, Berger S A and Stamatakis A

(2011), “Accelerating Phylogeny-Aware

Short DNA Read Alignment with FPGAs”,

19th IEEE Annual International Symposium

Field-Programmable Custom Computing

Machines (FCCM).

 4. Gabriel F Villoente, Mark Oliver L Ouano,

Mary Grace C Dy Jongco, and Emilyn B

Escabarte (2011), “FPGA Based Agrep for

DNA Microarray Sequence Searching”,

International Conference on Computer

Engineering and Applications, IACSIT

Press, Vol. 2.

5. Arun M and Krishnan A (2011), “Low Power

Bloom Filter Architectures Using Multi Stage

Lookup Techniques”, Australian Journal of

Electrical & Electronics Engineering,

Australia, Vol. 8, No. 3, pp. 1-10.

6. Páll Melsted and Jonathan K Pritchard

(2011), “Efficient counting of k -mers in DNA

sequences using a bloom filter”, BMC

Bioinformatics, Vol. 12, p. 333.

7. Arun M and Krishnan A (2011), “Functional

Verif ication of Signature Detection

Architectures for High Speed Network

Applications”, International Journal of

Automation and Computing, Springer, Vol.

9, No. 4, pp. 395-402.

8. Che S, Boyer M, Meng J, Tarjan D, Sheaffer

J W, Lee S H and SkadronK (2009), “Rodinia:

A Benchmark Suite for Heterogeneous

Computing”, In Proceedings of the IEEE

International Symposium on Workload

Characterization (IISWC), pp. 44-54.

9. Yoginder S Dandass, Shane C Burgess,

Mark Lawrence and Susan M Bridges

(2008), “Accelerating String Set Matching in

FPGA Hardware for Bioinformatics

Research”, BMC Bioinformatics 2008, 9:197

doi:10.1186/1471-2105-9-197, April 2008.

10. Lysaght P (2006), “FPGAs in the decade

after Von Neuman Century”, DATE06

Conference Proceedings, Munich,

Germany.

11. Junid S A M (xxxx), “Dept. of Electron.”, Univ.

Teknol. MARA, Shah Alam, Majid Z A, Halim

A K, “Development of DNA sequencing

accelerator based on Smith Waterman

algorithm with heuristic divide and conquer

technique for FPGA implementation”.

12. Sotiriades E, Kozanitis C and Dollas A

(2006), “FPGA based architecture for DNA

sequence comparison and database

search”, 20th International Symposium on

Parallel and Distributed Processing.

13. Euripides Sotiriades, Christos Kozanitis and

Apostolos Dollas (2005), “Some Initial

Results on Hardware BLAST acceleration

with a reconfigurable architecture”, IEEE, 1-

4244-0054-06, 2006.

14. Timothy Oliver, Bertil Schmidt and Douglas

Maskell (2005), “Hyper Customized

Processors for Bio-Sequence Database

Scanning on FPGAs,” FPGA‘05, Monterey,

CA.

15. Tan L and Sherwood T (2005), “A High

Throughput String Matching Architecture for

Intrusion Detection and Prevention”,

27

This article can be downloaded from http://www.ijlbpr.com/currentissue.php

Int. J. LifeSc. Bt & Pharm. Res. 2013 A Surendar et al., 2013

Proceedings of the 32nd Annual Intl.

Symposium on Computer Architecture

(ISCA 2005).

16. Stefan Dydel and Piotr Bala (2004), “Large

Scale Protein Sequence Alignment Using

FPGA Reprogrammable Logic Devices”,

Springer FPL, LNCS 3203, pp. 23-32, 2004.

17. West B, Chamberlain R D, Indeck R, and

Zhang Q (2003), An FPGA-based Search

Engine for Unstructured Database, Proc. of

2nd Workshop on Application Specific

Processors, December.

18. Yoshiki Yamaguchi and Tsutomu Maruyama

(2002), “High Speed Homology Search with

FPGAs”, Pacific Symposium on

Biocomputing, Vol. 7, pp. 271-282.

19. Mukhopadhyay S, Changhong Tang, Huang

J, Mulong Yu and Palakal M(2002), “A

comparative study of genetic sequence

classification algorithms”, Neural Networks

for Signal Processing, pp. 57-66.

